
isobaric, while gas motion under the action of a pressure head may be considered isothermal. 
Without performing calculations, this conclusion is not obvious for a rarefied gas. 

NOTATION 

~, channel length; a, channel height; P, pressure; T, temperature; f, distribution 
function; m, molecular mass; k, Boltzmann's constant; v, molecular velocity; x, y, z~ coor- 
dinates; Tw, relative wall temperature; r dimensionless molecular velocity; L = ~/~, di- 
mensionless channel length; D, dynamic gas viscosity; w, dimensionless thermal molecular 
velocity; u, gas velocity; n, gas density; q, thermal flux density; Jk, thermodynamic flux; 
Akn, kinetic coefficient; Xk, thermodynamic force; h, disturbance function; Lsh, col~ision 
operator; @, relative gas pressure; T, relative gas temperature; 6, rarefaction parameter; 
y, TPD index. 
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ACTION OF THE HALL EFFECT ON FLOW AND HEAT TRANSPORT 

IN A CONDUCTIVE GAS FLOW NEAR A ROTATING DISK 

V. D. Borisevich and E. P. Potanin UDC 532.526.75:533.95:537.84 

The action of the tensor character of medium conductivity upon flow and heat 
transport in the boundary layer on a rotating disk is studied in the presence 
of an axial magnetic field and various directions of the angular velocity 
vector. 

In an analysis of an MHD-boundary layer on a rotating disk [i] proposed an appro~:imate 
method for integrating the nonlinear equations of motions, involving averaging of inertial 
terms over layer thickness. A modification of that method was later successfully used to 
calculate hydrodynamic and thermal boundary layers near a rotating disk with exhaust and 
draft of the medium through the porous surface of the body flowed over in the presence or 
absence of an external magnetic field [2-5]. Comparison of the moments of the friction 
forces and thermal fluxes calculated on the basis of the approximate and numerical methods 
revealed good agreement. In the present study the method of partial consideration of iner- 
tial terms will be used to determine flow and heat transport in a flow of conductive gas 
in the boundary layer on a rotating disk in the case where Hall phenomena play a significant 
role. 

We will consider the motion of a viscous conductive gaseous medium near an infinite di- 
electric disk rotating at constant angular velocity ~ about the z axis in an external homo- 
geneous axial magnetic field B. Neglecting the induced magnetic field, the system of ~ydro- 
dynamic equations of the boundary layer with consideration of electromagnetic forces has the 
form 
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To determine the values of the densities of the radial Jr and azimuthal j~ electric 
currents we use a generalized Ohm's law with neglect of ion drift [6]: 

jr --= ~ ( v - -  ~i~), i~ ~- CfBz (Ojr - -  u). (4 )  

Using Eqs. (1)-(4), we obtain the equations of motion in projections on the axes r and 

Ou O~ v ~ O~u oB~ u oB~ czv 
u - - + w  - - - - , ~  + , (5)  

Or Oz r Oz 2 p (1 -[-, r 2) p ( 1 q- a ~) 

Ov Ov uv = v O~v oB~ v ~B~ ~zu 
u ~ f f - w ~ - } -  r Oz 2 p( lq-cz  ~) p ( l @ c z  2) (6)  

Here a = oSB z is the Hall parameter. 

We note that consideration of Hall effects leads not only to the appearance of addition- 
al current components in the radial and tangential directions [the last terms on the right 
sides of Eqs. (5) and (6)], but to a reduction in the conventional induction current, re- 
lated to motion of the conductive medium across the magnetic field. 

We will assume that ~ ++ B and the following approximate boundary conditions are satis- 

fied: 

z = 0  u = 0 ,  v = m r ;  

Ov (7) 
z = 6  u = 0 ,  v = 0 ,  - -0 .  

Oz 

Taking  u = r F ( z ) ,  v = r G ( z ) ,  c o n s i d e r i n g  t h e  c o n d i t i o n  a p / S r  = 0, and r e p l a c i n g  t h e  i n -  
e r t i a l  t e rms  t o g e t h e r  w i t h  t h e  e l e c t r o m a g n e t i c  " f o r c e s "  by t h e i r  mean v a l u e s  a c r o s s  t h e  l a y e r  
s e c t i o n  [ 1 ] ,  as  a r e s u l t  o f  i n t e g r a t i n g  Eqs.  ( 5 ) ,  (6 )  w i t h  c o n s i d e r a t i o n  o f  Eq. (7 )  we ob-  
t a i n  

( ) ( F - -  A6~co ~]~ ~] , G = c o  1 - -  , 

A g ~ 7 -  3 2n~ 

where n = z4~/v. 

The dimensionless quantities A and 6 0 
equations: 

A -  A26~ 1 
40 5 

= 6~-~ are defined from a system of algebraic 

so~ SAa~o 
3 (1 Jr (z z) 12 (1 -{- o: 2) (s) 

2 1 1  so ] s 
6 ~  = A  - - +  + , (9 )  I 0 12 (I + ~z) 3 (I -[- ~2) 8~ 

where S = oBz2/p~. 

Figure 1 shows the dependence of boundary layer thickness on the parameter a. As S § 
0 and a § 0 the solution coincides with the known result for a nonconductive medium [3, 7]. 
At low values of a the action of Hall effects on the radial electromagnetic force component 
is insignificant, appearing mainly as a reduction in the braking force [second term on right 
of Eq. (5)]. For small values of the parameter S this fact leads to an insignificant de- 
crease in boundary layer thickness 6 0 . With increase in ~ the Hall portion of the force 
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Fig. i. Dimensionless boundary layer thickness 60 vs Hall 
parameter ~ for various values of parameter S: i) 0.5; 2) 
i; 3) 2; 4) 3.16. 

Fig. 2. Dimensionless parameter A characterizing intensity 
of radial flow in boundary layer vs Hall parameter ~. S 
values as in Fig. I. 

plays a more marked role in acceleration of the medium in the radial direction, which caus- 
es an increase in 60. 

The dependence of the dimensionless quantity A on the Hall parameter ~ is shown in 
Fig. 2. In contrast to this dependence of A on ~, which has a maximum due to proportional- 
ity of the electromagnetic force to the quantity ~/(i + ~2), the radial flux in the boundary 
layer, defined by the expression 

6 

O = 2~ f v~rdz = ar  ~ 1 7 - 4 7  
�9 J 3 
o 

increases monotonically with increase in ~. This is true because the radial component of 
the electromagnetic force related to the Hall current accelerates the medium in the direc- 
tion from the axis to the periphery in this situation. Physically this result can be inter- 
preted as appearance of an "ion wind" upon passage of a radial current across an axial mag- 
netic field under conditions of electron "magnetization" [8]. 

Analytical solution for the hydrodynamic flow parameters permits easy evaluation of the 
action of Hall effects on heat transport in the boundary layer with neglect of viscous dissi- 
pation and Joulean heating. Using the solution of the thermal conductivity equation [5] for 
Prandtl numbers Pr = v/X << i, we obtain an expression for the local Nusselt number: 

Nu = _ Z(0) (v/m),/2 = AS~ Pr .  
(To - -  TD s 

OT 
Here q(0) =--~-~z(0) is the thermal flux on the disk surface; T O and T i are the absolute tem- 

peratures of the disk and the medium at infinite removal from the disk. 

Figure 3 shows the ratio Nu/Pr as a function of the parameter ~. As S + 0 (~ + -i i the 
quantity Nu/Pr + 0.95, which agrees well with the data of precise integration (Nu = 0.88 Pr 
[9]). Increase in heat exchange with increase in ~ is related to increased intensity (,f 
secondary flow near the disk surface with growth in Hall effects. 

We will note that to analyze the case of oppositely directed magnetic induction B and 
disk angular velocity ~ in Eqs. (8) and (9) it is sufficient to replace the parameter ~ by 
-~. Figure 4 shows results of calculating the radial flux of a conductive gas near the 
disk surface Q for various directions and values of the external magnetic field. As is 
evident from the results obtained, in the region ~ < 0 at moderate values of ]~I braking of 
the flow occurs. This can be explained by the change in sign of the Hall portion of the ra- 
dial electromagnetic force upon change in the direction of the external magnetic field. 
Increase in intensity of the radial motion of the medium toward the periphery with subse- 
quent increase in l~I is related to decrease in the braking electromagnetic force, propor- 
tional to ~/(i + ~2). System (8), (9) has a solution when the azimuthal viscosity forces 
in the boundary layer compensate the inertial and electromagnetic forces (i/i0 > S~/12(I + 
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F i g .  3. A c t i o n  o f  H a l l  p a r a m e t e r s  on i n t e n s i t y  o f  l o c a l  h e a t  
exchange on boundary layer at same S values as Figs. i, 2. 

Fig. 4. Radial flux of conductive gas in boundary layer Q vs 
Hall parameter e for S = 0.5 and 1 (curves 1 and 2, respective- 
ly). 

~2)). In the opposite case the type of self-similar motion considered here is not realized 
in view of the law of conservation of momentum. 

The approximate method for calculating electromagnetic forces in the equations of mo- 
tion of conductive media permits a simple and sufficiently accurate analytical solution of 
hydrodynamic problems, which may be useful for engineering projections. An advantage of 
the method is the ease of analysis of various mechanisms which control the behavior of the 
hydrodynamic characteristics of the boundary layer flow. 

NOTATION 

u, v, w, radial, azimuthal, and axial velocity components; r, z, radial and axial 
coordinates; p, pressure; p, density; v, kinematic viscosity; T, absolute temperature; X, 
thermal diffusivity coefficient; K, thermal conductivity coefficient; o, medium conductiv- 
ity without magnetic field; B, magnetic field intensity; j, electrical current density; 8, 
Hall constant; m, angular velocity of disk rotation; 6, disk boundary layer thickness; S, 
magnetohydrodynamic interaction parameter; Pr, Prandtl number; Nu, Nusselt number; ~, Hall 
parameter; Q, radial flux in boundary layer. 
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